\(\int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx\) [21]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 66 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {a^2 \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \tan ^3(c+d x)}{3 d} \]

[Out]

a^2*arctanh(sin(d*x+c))/d+2*a^2*tan(d*x+c)/d+a^2*sec(d*x+c)*tan(d*x+c)/d+1/3*a^2*tan(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2836, 3852, 8, 3853, 3855} \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {a^2 \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 \tan ^3(c+d x)}{3 d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{d} \]

[In]

Int[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^4,x]

[Out]

(a^2*ArcTanh[Sin[c + d*x]])/d + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/d + (a^2*Tan[c + d*x]
^3)/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (a^2 \sec ^2(c+d x)+2 a^2 \sec ^3(c+d x)+a^2 \sec ^4(c+d x)\right ) \, dx \\ & = a^2 \int \sec ^2(c+d x) \, dx+a^2 \int \sec ^4(c+d x) \, dx+\left (2 a^2\right ) \int \sec ^3(c+d x) \, dx \\ & = \frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+a^2 \int \sec (c+d x) \, dx-\frac {a^2 \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}-\frac {a^2 \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d} \\ & = \frac {a^2 \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \tan ^3(c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {a^2 \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a^2 \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \tan ^3(c+d x)}{3 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^4,x]

[Out]

(a^2*ArcTanh[Sin[c + d*x]])/d + (2*a^2*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/d + (a^2*Tan[c + d*x]
^3)/(3*d)

Maple [A] (verified)

Time = 3.31 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.14

method result size
derivativedivides \(\frac {a^{2} \tan \left (d x +c \right )+2 a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(75\)
default \(\frac {a^{2} \tan \left (d x +c \right )+2 a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(75\)
parts \(-\frac {a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {a^{2} \tan \left (d x +c \right )}{d}+\frac {a^{2} \sec \left (d x +c \right ) \tan \left (d x +c \right )}{d}+\frac {a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(81\)
risch \(-\frac {2 i a^{2} \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-3 \,{\mathrm e}^{4 i \left (d x +c \right )}-12 \,{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}-5\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(111\)
parallelrisch \(-\frac {3 \left (\left (\cos \left (d x +c \right )+\frac {\cos \left (3 d x +3 c \right )}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (-\cos \left (d x +c \right )-\frac {\cos \left (3 d x +3 c \right )}{3}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\sin \left (d x +c \right )-\frac {2 \sin \left (2 d x +2 c \right )}{3}-\frac {5 \sin \left (3 d x +3 c \right )}{9}\right ) a^{2}}{d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(124\)
norman \(\frac {-\frac {6 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {20 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {8 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {4 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {2 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}+\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(166\)

[In]

int((a+cos(d*x+c)*a)^2*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*tan(d*x+c)+2*a^2*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-a^2*(-2/3-1/3*sec(d*x+c)^2
)*tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.45 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {3 \, a^{2} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a^{2} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (5 \, a^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/6*(3*a^2*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*a^2*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(5*a^2*cos(d
*x + c)^2 + 3*a^2*cos(d*x + c) + a^2)*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F]

\[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=a^{2} \left (\int 2 \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int \cos ^{2}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int \sec ^{4}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**4,x)

[Out]

a**2*(Integral(2*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(cos(c + d*x)**2*sec(c + d*x)**4, x) + Integral(se
c(c + d*x)**4, x))

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.29 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {2 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{2} - 3 \, a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, a^{2} \tan \left (d x + c\right )}{6 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/6*(2*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^2 - 3*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) +
 1) + log(sin(d*x + c) - 1)) + 6*a^2*tan(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.61 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{3 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/3*(3*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*a^2*tan(1/2*d*
x + 1/2*c)^5 - 8*a^2*tan(1/2*d*x + 1/2*c)^3 + 9*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 15.60 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.70 \[ \int (a+a \cos (c+d x))^2 \sec ^4(c+d x) \, dx=\frac {2\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {16\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+6\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int((a + a*cos(c + d*x))^2/cos(c + d*x)^4,x)

[Out]

(2*a^2*atanh(tan(c/2 + (d*x)/2)))/d - (2*a^2*tan(c/2 + (d*x)/2)^5 - (16*a^2*tan(c/2 + (d*x)/2)^3)/3 + 6*a^2*ta
n(c/2 + (d*x)/2))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))